
On centralized and decentralized
distributed systems

Stephan Soller, Computer Science and Media
Stuttgart Media University

ss312@hdm-stuttgart.de

Recent distributed systems needed a great amount of re-
search to scale. Older distributed systems achieved glob-
al scale seemingly without this much effort. This paper
takes a look at the history of several globally distributed
systems (mail, DNS, HTTP, Google, Facebook and Twit-
ter) and the differences in their initial designs and how
these relate to scalability.

It is found that distribution of operations and author-
ity provides an horizontal scalability layer. But probably
at the cost of difficult coordination and slower develop-
ment.

During recent years scalability was a major focus of dis-
tributed systems. Through global systems like Google
search or Facebook much research has been conducted.
Many different methods have been tried to sustain the
sometimes exponential growth of these platforms. Sys-
tems that failed to scale were often deserted by their
users who chose to use more responsive systems of the
competition. One popular example of such a failed sys-
tem is Friendster [1].

Yet seemingly unnoticed in all these recent develop-
ments some global systems have been around longer
and achieved similar scales. The most obvious one is the
email system since pretty much any registration (e.g. at
Facebook) requires the user to have a valid mail box.
Others are the domain name service (DNS) and even the
HTTP based internet itself as most users perceive it to-
day: A network of websites running on many different
webservers.

These older systems are the basic infrastructure used
by todays modern global systems. Yet the scalability of
the HTTP based internet, mail or DNS does not seem to
require the intense amount of research and effort put in-
to Google or Facebook.

This paper tries to explore the difference in design be-
tween some older (mail, DNS, HTTP) and newer globally
distributed systems (Google, Facebook, Twitter). To find
the key differences between them and how they relate
to scalability.

This section provides a short history of some systems
that have been the recent focus of some major scalability
research: Google, Facebook and Twitter. It doesn't ex-
plain what they are or how they operate but instead tries
to shed some light on the circumstances and technical
mindset that lead to their creations.

Google
Around 1996 Google started out as a centralized indexing
architecture build for improved search quality, scalabil-
ity and academic research [2] [3]. Coming from the Stan-
ford University it had a strong academic mindset of un-
derstanding and solving the challenges at hand. To scale
alongside the growing web was an intrinsic aspect of its
system design.

At Google technologies like GFS [4] and MapReduce [5]
were created, each with scalability at heart. They were
the base that allowed Google to efficiently handle the
vast amounts of data and requests. Systems at Google are
running in a closed and optimized environment and to
the user they are accessible as a normal website. From
the users perspective the distribution is practically in-
visible.

Facebook
After about one month of development by Mark Zucker-
berg Facebook was released in 2004 [6]. At first as a
Harvard-only social network but it was subsequently
opened to other US universities, high schools and later
on everyone. The expansion was carried out step by step.

Abstract

Introduction1.

Google, Facebook and Twitter2.

1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.



Before each expansion additional capacity was added to
sustain the expected growth of the user base [7].

The first version of Facebook was a website build with
the open source LAMP stack. Over time parts of that
stack were replaced with custom build technologies like
Cassandra and the HipHop virtual machine for PHP. Per-
manent changes and improvements like these were nec-
essary to sustain Facebooks growth and keep the website
usable. While Facebook itself is operated in a closed en-
vironment most of their software is either open source
or custom build and subsequently released as open
source.

Twitter
In 2006 Twitter was released to the public. Initially it
was meant to be an SMS based internal company infor-
mation exchange [8]. It quickly changed into a Ruby on
Rails based website using MySQL for storage. With this
monolithic code base scalability was mostly achieved by
"throwing machines at the problem". But further opti-
mization and development became more difficult. As a
consequence large parts of the infrastructure were rede-
signed, mostly as distributed services on top of the JVM
[9].

Twitter too operates its infrastructure in a closed en-
vironment but also heavily uses and contributes to open
source software [10].

Similarities
Although these systems do quite different things there
are some common themes in how they came to be and in
how they are operated.

In case of Facebook and Twitter (and many others)
they started out as normal websites. After attracting
many users the focus on scalability and later on distribu-
tion was simply a means to keep these websites running.
Google differs here because it was specifically designed
for the scale and growth of the internet. This might be
attributed to its strong academic roots.

In all three cases distribution was primarily used to
maintain proper performance at the scales in question.
For the users themselves the distribution is completely
invisible. All systems are pretty much perceived as web-
sites or web applications.

Further similarities can be found in the way these sys-
tems are managed and operated: Usually the entire in-
frastructure is owned and operated by the respective

company. The company forms one central instance to
make decisions and to coordinate different parts of the
infrastructure or different development teams. This al-
lows to coordinate even radical changes efficiently. For
example Twitters migration to the JVM.

On the operations side pretty much the entire infra-
structure runs as a tightly supervised closed system.
APIs to interface with e.g. Google are provided by they
don't allow direct access to parts of the system, for ex-
ample files on one clusters GFS. From the outside these
systems are effectively black boxes. This allows radical
changes without breaking any outwards compatibility.
Having the entire infrastructure in one hand also allows
to optimize low-level aspects. For example details of the
Linux kernel network stack or the physical distance and
arrangement of servers in the racks.

There are exceptions to this. For example Dropbox us-
es Amazon S3 to store user data instead of operating
their own storage system. But this is invisible from the
outside and can possibly change.

In regards to technology all companies publish or
share some of their key technologies as open source. For
example many companies use Hadoop which is based on
the Google File System and MapReduce papers published
by Google. In turn Google probably uses software pub-
lished by other companies or at least draws inspiration
from them. This creates to an open development culture
focused on overcoming challenges instead of keeping so-
lutions hidden from the competition.

These systems have been around since the beginning of
the internet. To some extend they have even been the
reasons for it's creations or at least accelerated it. Again
this section doesn't try to describe how they work but
what the mindset was when they came to be.

Mail
Development on mail systems began in the 1960s at mul-
tiple projects. Many big computer systems developed
their own way to send messages between users. This
wasn't a "planned" feature but some users discovered
the need for sending messages and others implemented
programs and commands for it. At that time message
transmission was only possible between users working
on the same mainframe (e.g. MITs CTSS) [11].

Mail, DNS and HTTP3.

2



With the creation of the ARPANet many of these com-
puters became connected with each other. Networked
mail delivery was one of the first proposed applications
for the ARPANet and evolved in the 1970s. As the global-
ly connected internet was yet to come much effort went
into getting data across the different systems and net-
work fragments (e.g. by putting routing paths into the
recipients address). Development happened in a very
collaborative way and information and ideas were
shared and discussed openly. In fact the RFC (Request
for Comments) infrastructure emerged as part of the
ARPANet project.

Since the ARPANet was small and there were more
pressing matters (e.g. message routing) it seems not
much effort was invested into scalability of the system.
It grew as disconnected islands which then were merged
by the ARPANet. Because of that there never was a cen-
tral mailbox repository where all the traffic hit. RFC 882
even states that "mail system implementers long ago
recognized the impossibility of centralizing mailbox
names" [12] which is more or less what Twitter does to-
day.

During its long history some parts of the mail system
were replaced or obsoleted (e.g. routing paths in ad-
dresses). But most early efforts seem to focus on com-
mon data formats and establishing connections between
systems. This in part lead to the development of DNS.

Later on private providers started to handle most of
the mail traffic and their mail servers needed to scale
with the growing demand. This performance oriented
scaling does not seem to require the extreme amount
and effort scalability of Google or Facebook required
[13].

Maybe performance and efficiency was a given re-
quirement at the time and not noteworthy. After all
compared with todays computers the mainframes of
that era had next to no capacity.

Domain Name System
The history of DNS starts with the ARPANet around the
1970s. At first the ARPANet used a centrally maintained
hosts.txt file to resolve host names to IP addresses. This
file was updated nightly and then copied to all systems
connected to the ARPANet. Since the ARPANet was
growing quickly it didn't take long until maintenance
and distribution of the hosts.txt file became impractical.

DNS was designed to replace the hosts.txt file [14] but
also had the purpose to simplify mail routing and de-
livery. Two major factors in its distributed design were
scalability and zones of authority [15]. This distributed
not only the lookup of domain names but also the main-
tenance of the DNS database (or it's individual zones)
across the network.

During the decades of operation several aspects of
DNS were extended. Incremental Zone Transfer (IXFR),
NOTIFY, dynamic updates and other extensions each
solved previous shortcomings of the system [16]. It
should also be noted that politics played a significant
role in DNS as the internet in general moved towards
commercialization.

HTTP
HTTP (or the web in general) was conceived around 1990
to allow CERNs researchers to better coordinate and doc-
ument projects. Or simply to make the information at
CERN accessible to the people who needed them. The
idea was to overcome limits of hierarchical systems like
newsgroups and to freely structure and link informa-
tion. To create a "web" of linked hypertext documents.
Much like a wiki of today.

It was decentralized so that no central control or co-
ordination is required to link systems together. Hetero-
geneity also was a design goal to allow different client
"browser" programs to interact with different "hyper-
text servers". This was necessary because people at
CERN worked with many different systems (VM/CMS,
Macintosh, VAX/VMS, Unix) and for each of those a
client had to be written. On the server side many dif-
ferent databases were proposed to be accessible via "hy-
pertext servers", for example newsgroups, CERNDOC,
filesystems, the telephone book and even the unix man-
ual. Each one serving its information as hypertext [17].

The Hypertext Transfer Protocol (HTTP) was designed
as the glue between such clients and servers. Its struc-
ture (a header and body) and the headers themselves
were heavily inspired by the mail format. Scalability it
seems wasn't an explicit concern during HTTPs initial
design. It's not mentioned in the early design documents
or RFCs. However the protocol was stateless and idem-
potent on purpose [18], probably to allow better caching.
Later on HTTP was revised by deriving and following the
REST architecture [19]. Increasing scalability and even

3



tolerating "anarchic scalability" was one of the goals of
this effort and lead to HTTP 1.1.

Similarities
Mail, DNS and HTTP all have different purposes but yet
again there are some similarities.

Servers of all three systems are operated by many dif-
ferent instances and companies. Not one systems opera-
tion is in the hands of a single instance. DNS has a central
administrative body though. Which servers are operated
by whom is usually closely related to real world organi-
zational structures or trust zones. With DNS and HTTP
this was probably the obvious thing to do at the time.
Whoever wants to operate servers with global names or
publish documents also runs the servers to do so. The
mail system pretty much started out with this structure
since it emerged from the mainframes of different orga-
nizations.

Development however is coordinated through one
more or a less central instance: the IETF. There prob-
lems, ideas and solution are discussed openly to foster
further development.

Maybe as a consequence all systems are build for in-
teroperability, at least DNS and HTTP. The mail system
emerged out of many different implementations and
was standardized to be interoperable. There wasn't
much competition between "platforms" but different
implementations were gradually assimilated by continu-
ously revising the infrastructure.

From the clients point of view no system has a "cen-
tral interface". Instead the client directly interfaces with
the required servers. In day to day usage however this
fact is rarely if at all noticed. For users there isn't much
of a difference between sharing a user name or a mail ad-
dress.

The previously discussed distributed systems all have
some differences and similarities with one another. This
part of the paper highlights some of the key differences
between older and newer distributed systems.

Central gateway
Google, Facebook and Twitter have a centralized inter-
face to the rest of the internet: Their respective web-
sites. Components implementing this central "gateway"

must be able to handle the entire amount of data and
scale with the growth of the entire system. The load
on these gateways can be distributed via DNS and HTTP
load balancing but semantically its still one point where
all the traffic comes through.

Mail, DNS and HTTP on the other hand lack this cen-
tral point. Instead the address of whatever you want to
interact with already contains enough information to
figure out which server to contact (e.g. a mail address,
domain name or URL). Users sharing their addresses al-
ready form a simple distributed directory.

User names at Google, Facebook and Twitter don't
have that property. When scaled to a distributed system
a kind of directory lookup or distributed hashing is re-
quired to get the location of the object of interest. Again
this central component must be able to cope and scale
with the total load of the entire system.

Centralized operations
With centralized operations the entire infrastructure
can be optimized, down to every low-level aspect. From
the hardware of the different servers to the physical lay-
out and structure of the internal network. Even entire
data centers can be optimized, e.g. for energy efficiency.
Every aspect of the software stack can be optimized too.
Using efficient operating systems, making the operating
system more efficient or using specialized deployment
and monitoring tools. Changes affecting the entire sys-
tem can be deployed efficiently.

These are important aspects since they make it easier
to quickly identify and solve problems and bottlenecks
at every layer. This in turn opens up more potential to
improve the scalability of every component and the en-
tirety of the system.

Its difficult to say if decentralized systems could have
handled the rapid growth some platforms experienced
(e.g. Facebook). Maybe it would have taken to long to
identify and solve problems of the basic decentralized
interactions. In the worst case users would've lose inter-
est in the new technology.

However once basic interactions of a decentralized
system work the scalability depends only on the perfor-
mance required by each node. It's no longer dependent
on the size of the entire system. If a company doesn't
cause much load on their node they don't need to put
much effort into scalability. If the infrastructure of one
node is operated by a single instance and scalability is

Key differences in design4.

4



needed all the optimizations from above can be done
here too. In that scheme Facebook is just one insanely
scaled up node in the HTTP network. Others without
these scalability demands are not affected by the opti-
mizations done by Facebook.

Decentralized operations also make the system more
resilient. Different parts can be operated at different lo-
cations around the world by different legal entities. Thus
they're better protected from natural disasters and legal
turmoil. Large cooperations like Google can do the same
but still provide one legal attack point: The host cooper-
ation. In contrast companies that operate e.g. different
mail servers can be legally independent of each other.

Centralized authority and management
The impact of authority and management on scalability
is not clear.

When authority is centralized one company alone has
authority over the system and how it is used. This can be
used to filter out unwanted or inappropriate content, for
example pornographic content, troll comments or mali-
cious apps in an app store. That in turn maybe useful or
even necessary to uphold a certain image or purpose of
a product.

But as soon as user generated content becomes im-
portant things get more problematic. Generally users as-
sume to have authority over their own content (e.g. im-
ages or comments). The legal situation however is com-
plicated. In extreme cases this becomes a conflict of in-
terest between the users freedom of expression and the
interests of the company. The matter gets even more
complicated when the users of a system span multiple
cultural zones and what is regarded as inappropriate
content can differ between them. When one company
holds central authority over a system it has to take care
of and is responsible for all of this. While there is no ob-
vious technical impact on scalability it requires the com-
pany to scale and adapt to different cultures and laws.

With decentralized authority the above burden is dis-
tributed between all the different companies or in-
stances that operate the parts of the system. This allows
the system to adapt and match the cultural standards
of whoever is operating the part. Its also much more in
line with current territorial based legislation. At least if
a server e.g. hosting German content is also operated in
Germany.

Differences in development
All the systems discussed in this paper use a quite free
development culture. But there are some subtle differ-
ences that might have an impact on the scalability a sys-
tem achieves.

All use centralized instances to coordinate develop-
ment. Either a company or some form of committee or
work group. At companies like Google small teams devel-
op and publish "working and battle proven prototypes"
as open source projects. These are internally consistent
and optimized for their purpose.

Communication and coordination in a small team is
more direct, efficient and productive than in a work
group or committee. Especially when the team can work
full time on the project whereas members of work
groups often do their work on the sidelines. In a commit-
tee or working group communication is probably more
difficult and slow. In turn it becomes difficult or takes
longer to create consistent and optimized systems.

Also interest of different committee members proba-
bly differ from one another more than the interests of
different team members. This gives rise to political dy-
namics that can slow down development or lead to in-
consistent software.

Fast growing systems sometimes need to change
quickly to stay scalable. With working groups or com-
mittees this is more difficult than with small teams.

There are probably reasons why more recent distributed
systems are often centralized. That is they're basically
websites that have been scaled up. While an authorita-
tive search for these reasons is well beyond the scope
here the above information allows us to speculate about
them. Even if only briefly.

Facebook and Twitter started out as centralized web-
sites. While monetization maybe a reason why they stay
centralized its probably not the reason for the initial
centralized design. At first Facebook, Twitter and nei-
ther Google had a clear plan on how to earn money with
their services. They were just useful to people.

Surveillance probably wasn't a reason either: In case
of Google and Facebook government agencies probably

Popularity of centralized
systems

5.

5



reacted to the new communication trends and requested
and implemented new surveillance methods.

Maybe after 2000 many developers simply grew up
with HTTP. Whenever something needed to be done
"creating a websites" simply was the first way to do it. In
that case future development will probably erode the ab-
stractions and constraints set by HTTP. Down until more
universal semantics are achieved that are usually pro-
vided by TCP (bidirectional channel) and UDP (low laten-
cy). Recent development into websockets seem to hint
into this direction. But much more research is needed
before this chain of conclusions can be seriously consid-
ered.

However when comparing the implementation of a
centralized and decentralized system one fact becomes
obvious: A website as central interface to a service is just
much more simple.

Decentralization on the network level has become in-
creasingly difficult and messy. Workarounds like NAT
prevent simple establishment of end to end connections.
Insecure software lead to widespread deployment of re-
strictive firewalls and routers. Each with their own
quirks that need to be taken into account and circum-
vented (e.g. UPnP and firewall auto-configuration).
Some vendors are unwilling or extremely slow to take up
new technologies. For example the entire IPv6 migration
or nearer to the software side of things: SCTP support on
Windows. All this combined makes the basic infrastruc-
ture for a decentralized system (e.g. peer to peer) ridicu-
lously more complex than a centralized one.

Given all the above information it can be assumed that
decentralized systems are probably simpler to scale once
the basic infrastructure is running. If it needs more or
less effort than a centralized system is difficult to tell
though.

That older distributed systems didn't need much ef-
fort to achieve scalability was a misconception of the au-
thor. DNS and later on HTTP too received a fair amount
of scalability research. The mail system is somewhat spe-
cial here since it started out in a decentralized and dis-
connected world. And at that time it wasn't possible to
centralize it. DNS on the other hand provides a differ-
ent example: It started out as a centralized list and with
deliberate effort became decentralized. The misconcep-
tion was probably caused by the current popularity of

Google, Facebook & Co. in scalability research. They are
the current "rock stars" in this area while the mail sys-
tem, DNS and others tag along just fine.

However it became clear that decentralized systems
have some intrinsic advantages. They don't have a cen-
tral "gateway" and if the address contains enough in-
formation a centralized directory isn't needed either. In
centralized systems these two components have to scale
with the load of the entire system. Decentralization of
operations and authority also provide an resilient hori-
zontal scalability layer. The cost and effort is automati-
cally spread among many organizations. Distributing au-
thority allows a system to naturally match the organiza-
tional and legal structures of its users.

Developing the basic infrastructure of a decentralized
systems however is much more difficult and on the long
run it's probably more difficult to adapt and change. If
a systems operations are centralized its easier to exten-
sively optimize and can be changed faster.

It would also be interesting to compare the number of
changes in different distributed systems. For example
the number of major technological overhauls or rede-
signs in Google, Twitter, Facebook, mail, DNS and HTTP.
This should give a more accurate impression of how
much effort was actually invested into the scalability of
each system. For older systems the data is readily avail-
able in the form of RFCs. Closed systems however don't
publish the details of all changes and this would make it
difficult to obtain comparable data.

It might also be worthwhile to include more recent
decentralized systems like XMPP and torrent networks
in the analysis. It's likely they have been influenced by
recent centralized systems. How did they came to be and
how they relate to other distributed systems might offer
a glimpse into future distributed systems.

Centralized distributed systems tend to become de-
centralized internally. This allows easier parallel devel-
opment of components, maintenance and fault toleran-
ce. In that they mimic the structures of decentralized
systems, yet they retain some kind of global control and
coordination over the entire infrastructure. This in-
stance allows to incrementally optimize all components
or even replace entire parts of the infrastructure if nec-
essary.

Conclusion6.

Further thoughts7.

6



Due to the lack of a sufficiently powerful "optimizing
instance" older distributed systems probably respond
more slowly to change, if at all (e.g. mail). It would be
an very interesting research topic if the advantages of
centralized and decentralized distributed systems can be
combined or not. Decentralized distributed systems lack
a central organization or "owner" and maybe this is mu-
tually exclusive to having a powerful enough "optimiz-
ing instance" for the entire system.

[1] Friendster founder on the rise and fall of Ameri-
ca's first big social network
http://latimesblogs.latimes.com/technology/
2009/07/friendster.html
Retrieved 2014-01-31

[2] Google.com - Our history in depth
http://www.google.com/about/company/histo-
ry/
Retrieved 2014-01-31

[3] The Anatomy of a Large-Scale Hypertextual Web
Search Engine
http://infolab.stanford.edu/~backrub/
google.html
Retrieved 2014-01-31

[4] The Google File System
http://research.google.com/archive/gfs-
sosp2003.pdf
Retrieved 2014-01-31

[5] MapReduce: Simplified Data Processing on Large
Clusters
http://research.google.com/archive/mapre-
duce.html
Retrieved 2014-01-31

[6] Did Mark Zuckerberg's Inspiration for Facebook
Come Before Harvard?
http://readwrite.com/2009/05/10/
mark_zuckerberg_inspiration_for_facebook_before_harvard
Retrieved 2014-01-31

[7] The Technical Architecture Behind Facebook
hhttp://frrl.wordpress.com/2011/03/22/the-
technical-architecture-behind-facebook/
Retrieved 2014-01-31

[8] The Real History of Twitter, In Brief
http://twitter.about.com/od/Twitter-Basics/a/
The-Real-History-Of-Twitter-In-Brief.htm
Retrieved 2014-01-31

[9] New Tweets per second record, and how!
https://blog.twitter.com/2013/new-tweets-per-
second-record-and-how
Retrieved 2014-01-31

[10] Twitter - Open Source
https://about.twitter.com/company/open-
source
Retrieved 2014-02-02

[11] The History of Electronic Mail, Tom Van Vleck
http://www.multicians.org/thvv/mail-histo-
ry.html
Retrieved 2014-02-02

[12] RFC 882 - DOMAIN NAMES - CONCEPTS and FA-
CILITIES
https://www.ietf.org/rfc/rfc0882.txt
Retrieved 2014-02-02

[13] A history of e-mail: Collaboration, innovation
and the birth of a system, Dave Crocker
http://www.washingtonpost.com/national/on-
innovations/a-history-of-e-mail-collaboration-
innovation-and-the-birth-of-a-system/2012/03/
19/gIQAOeFEPS_story.html
Retrieved 2014-02-02

[14] Short History of DNS
http://support.easystreet.com/domain-name-
services/97-short-history-of-dns
Retrieved 2014-02-02

[15] One History of DNS, Ross Wm. Rader
http://www.byte.org/blog/one-history-of-
dns.pdf
Retrieved 2014-02-02

[16] The Evolution of DNS – Starting from the Begin-
ning
http://blog.neustar.biz/dns-matters/the-
evolution-of-dns-starting-from-the-beginning/
Retrieved 2014-02-02

[17] Information Management: A Proposal, Tim
Berners-Lee
http://www.w3.org/History/1989/propos-
al.html
Retrieved 2014-02-02

References8.

7

http://latimesblogs.latimes.com/technology/2009/07/friendster.html
http://www.google.com/about/company/history/
http://infolab.stanford.edu/~backrub/google.html
http://research.google.com/archive/gfs-sosp2003.pdf
http://research.google.com/archive/mapreduce.html
http://readwrite.com/2009/05/10/mark_zuckerberg_inspiration_for_facebook_before_harvard
hhttp://frrl.wordpress.com/2011/03/22/the-technical-architecture-behind-facebook/
http://twitter.about.com/od/Twitter-Basics/a/The-Real-History-Of-Twitter-In-Brief.htm
https://blog.twitter.com/2013/new-tweets-per-second-record-and-how
https://about.twitter.com/company/open-source
http://www.multicians.org/thvv/mail-history.html
https://www.ietf.org/rfc/rfc0882.txt
http://www.washingtonpost.com/national/on-innovations/a-history-of-e-mail-collaboration-innovation-and-the-birth-of-a-system/2012/03/19/gIQAOeFEPS_story.html
http://support.easystreet.com/domain-name-services/97-short-history-of-dns
http://www.byte.org/blog/one-history-of-dns.pdf
http://blog.neustar.biz/dns-matters/the-evolution-of-dns-starting-from-the-beginning/
http://www.w3.org/History/1989/proposal.html


[18] HyperText Transfer Protocol Design Issues
http://www.w3.org/Protocols/DesignIs-
sues.html
Retrieved 2014-02-02

[19] Architectural Styles and the Design of Network-
based Software Architectures
http://www.ics.uci.edu/~fielding/pubs/disser-
tation/fielding_dissertation.pdf
Retrieved 2014-02-02

8

http://www.w3.org/Protocols/DesignIssues.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

	On centralized and decentralized distributed systems
	Abstract
	Introduction
	Google, Facebook and Twitter
	Google
	Facebook
	Twitter
	Similarities

	Mail, DNS and HTTP
	Mail
	Domain Name System
	HTTP
	Similarities

	Key differences in design
	Central gateway
	Centralized operations
	Centralized authority and management
	Differences in development

	Popularity of centralized systems
	Conclusion
	Further thoughts
	References


